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SUMMARY

Operator splitting algorithms are frequently used for solving the advection–diffusion equation, especially
to deal with advection dominated transport problems. In this paper an operator splitting algorithm for
the three-dimensional advection–diffusion equation is presented. The algorithm represents a second-or-
der-accurate adaptation of the Holly and Preissmann scheme for three-dimensional problems. The
governing equation is split into an advection equation and a diffusion equation, and they are solved by
a backward method of characteristics and a finite element method, respectively. The Hermite interpola-
tion function is used for interpolation of concentration in the advection step. The spatial gradients of
concentration in the Hermite interpolation are obtained by solving equations for concentration gradients
in the advection step. To make the composite algorithm efficient, only three equations for first-order
concentration derivatives are solved in the diffusion step of computation. The higher-order spatial
concentration gradients, necessary to advance the solution in a computational cycle, are obtained by
numerical differentiations based on the available information. The simulation characteristics and accu-
racy of the proposed algorithm are demonstrated by several advection dominated transport problems.
© 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The three-dimensional advection–diffusion equation for a conservative concentration field
c(t, x) can be written as

(tc=Lc, (1)

where L is the sum of two differential operators

L=L1+L2, (2)

such that

L1= −u ·9, L2=9 · (D ·9), (3)

where vector u= (u, 6, w) is the flow velocity, D is a second-order tensor of diffusion
coefficients, x= (x, y, z) is the spatial co-ordinate, and t is time. With proper initial and
boundary conditions, Equation (1) constitutes a well-posed problem.
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The advection–diffusion Equation (1) is a parabolic equation. However, for advection-dom-
inated problems it behaves like a hyperbolic equation. A numerical procedure appropriate for
parabolic equations is not generally suitable for hyperbolic equations and vice-versa. For such
problems, operator splitting allows the decomposition of Equation (1) into an advection
equation and a diffusion equation, and the use of appropriate numerical procedures for solving
the split equations. The concept of operator splitting has been discussed in literature for more
than two decades [1,2], and they have been frequently used for solving engineering problems.
However, it is interesting to note that most of the reported operator splitting algorithms for
the advection–diffusion equation and the Navier–Stokes equations are based on first-order
accurate splitting [3].

The Holly and Preissmann [4] method has been the basis of many operator splitting
algorithms for the advection–diffusion equation. The split advection equation is solved by a
backward method of characteristics and the diffusion equation by conventional finite differ-
ence or finite element methods. During the advection step, a C1 continuous Hermite interpola-
tion function is used for spatial interpolation of concentration. The spatial derivatives of
concentration in the Hermite interpolation function are obtained by solving equations govern-
ing their advection and diffusion. The desirable features of solution procedure, small numerical
dispersion and dissipation, are obtained at a price, i.e. solving additional equations governing
the advection and diffusion of concentration gradients.

The basic concept of the Holly and Preissmann scheme has been adopted by Yang and Hsu
[5] and Yang et al. [6] for the one-dimensional advection–diffusion equation and by Ding and
Liu [7], Glass and Rodi [8], Holly and Usseglio-Polatera [9], and Yang et al. [10] for
two-dimensional problems. These operator splitting algorithms, including Holly and Preiss-
mann [4], are first-order-accurate in time due to splitting errors. Therefore, Khan and Liu [11]
utilized Strang [12] type splitting to make the composite algorithm for a system of one-dimen-
sional advection–diffusion–reaction equations second-order-accurate in time.

A direct application of the Holly and Preissmann scheme to multidimensional advection–
diffusion equation results in computationally expensive algorithms. It is necessary to solve
2d−1, where d is the dimension of the problem, additional equations for spatial concentration
gradients. To make the algorithm computationally less ‘complicated and expensive’ for
two-dimensional problems, Komatsu et al. [13,14] have proposed the use of modified Lagran-
gian type interpolation functions. The suggested interpolation functions contain ‘optimal’
weighting coefficients which are selected to reduce numerical dispersion and dissipation. An
alternative to Komatsu et al. [13,14] is to use the Hermitian interpolation function with
estimated derivatives (based on numerical differentiation of concentration) in the advection
step. Such an approach, with shape preserving constraints to preserve convexity or concavity
of solution, has been analyzed by Rasch and Williamson [15] for the one-dimensional
advection equation, and applied to two-dimensional problems by Williamson and Rasch [16].

The solution procedures by Komatsu et al. [13,14] and Rasch and Williamson [15] avoid the
need to solve concentration gradient equations in both the advection and diffusion steps of
computation. However, if the proposed eight-point interpolation function of Komatsu et al.
[13,14] is used for three-dimensional problems, then it will relate 512 surrounding nodes. The
resulting computational molecule is complex, incorporating information from outside the
domain of dependence of the solution. Moreover, expanding the computational molecule is
counter to the basic motivation of the Holly and Preissmann concept.

The numerical experiments carried out by Rasch and Williamson [15] indicate that the best
method of estimating concentration derivatives is problem-dependent. A selected method may
not result in simultaneous minimization of numerical dissipation and dispersion. The number
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of nodes involved in estimating concentration gradients and enforcing shape preserving
constraints is essentially the same as in Komatsu et al. [13,14]. Application of shape preserving
constraints to multidimensional problems is complicated and requires a series of adjustments
of the computed concentration and concentration gradients [16]. Such adjustments are likely to
result in mass conservation errors.

Baptista et al. [17] have analyzed accuracies of the backward method of characteristics for
the one-dimensional advection equation using different interpolation functions. The numerical
experiments indicate that the performance of the Hermite interpolation function with esti-
mated derivatives is better than Lagrangian type interpolation functions. In addition, the Holly
and Preissmann method is superior to procedures based on Hermite interpolation with
estimated derivatives. Consequently, developing operator splitting algorithms for the three-di-
mensional advection–diffusion equation by retaining the basic features of the Holly and
Preissmann concept appears attractive.

In this paper, an operator splitting algorithm for the three-dimensional advection–diffusion
equation is presented. It represents a second-order-accurate adaptation of the Holly and
Preissmann scheme and an alternative method of making the algorithm computationally
efficient for multidimensional problems. Once the characteristic path has been determined for
solving the advection equation for concentration, additional computational time for solving
equations for concentration gradients is negligible [9,13,14]. The Holly and Preissmann scheme
is computationally expensive, especially for multidimensional problems, because it is necessary
to solve additional diffusion equations for spatial concentration gradients. Therefore, the
solution procedure proposed in this paper solves all the equations advecting concentration
gradients. In the diffusion step, only three equations for first-order concentration derivatives
are solved. The higher-order gradients are obtained by numerical differentiations based on the
available information.

2. OPERATOR SPLITTING ALGORITHM

The basic theory of operator splitting algorithms was developed by Yanenko [1], Marchuk [2]
and Strang [12] in the context of locally one-dimensional methods. LeVeque and Oliger [18]
have analyzed splitting algorithms for a system of one-dimensional hyperbolic equations,
identifying different sources of errors in solving the equations. A similar analysis for a system
of coupled one-dimensional advection–diffusion–reaction equations has been presented by
Khan and Liu [11]. The analysis is applicable to Equation (1) (with proper definition of the
operators L, L1 and L2 and setting reaction operator to zero in Khan and Liu). A second-or-
der-accurate Strang type splitting algorithm [3,11,18] for Equation (1) can be obtained by
solving the following split equations

(tc1=L1c1, c1(tn, x)=c(tn, x), t� [tn, tn+1/2], (4)

(tc2=L2c2, c2(tn, x)=c1(tn+1/2, x), t� [tn, tn+1], (5)

(tc1=L1c1, c1(tn+1/2, x)=c2(tn+1, x), t� [tn+1/2, tn+1], (6)

and taking c(tn+1, x)=c1(tn+1, x). In the above equations, c1(t, x) and c2(t, x) are dependent
variables of the split advection and diffusion equations respectively, n is the number of time
steps, tn=nk, and k is the time step. Figure 1 shows the sequence of solving split equations in
a computational cycle. For a Strang type operator splitting algorithm, the composite algorithm
will be second-order-accurate [11,18] provided the numerical procedures for the split equations
are at least second-order-accurate.
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2.1. Ad6ection step of computation

The advection Equations (4) or (6) can be expressed as

Dc1

Dt
=0, (7)

where D/Dt=(t+u ·9. Equation (7) indicates that c1(t, x) is invariant along characteristic

dx
dt

=u. (8)

The solution of Equation (7) along the characteristic is

c1(tn+1, x)=c1(tn, x−ku). (9)

In this study, the three-dimensional computational domain is discretized by hexahedral
elements, Equation (8) is integrated backward in time by an explicit second-order-accurate
Runge–Kutta method, and c1(tn, x−ku) is determined by a C0 continuous serendipity
Hermitian interpolation function.

Let (h, j, z) be the local co-ordinates corresponding to global co-ordinates (x, y, z), such
that −15 (h, j, z)51. Then a C1 continuous Hermitian interpolation function for three-di-
mensional problems can be obtained by taking the tensor product of one-dimensional
Hermitian interpolation functions in the co-ordinate directions [19]. The following serendipity
Hermitian interpolation function for c1(tn+1, h, j, z) can be obtained

c1(tn+1, h, j, z)

= %
8

i=1

(Mi
000+Mi

100 (h+Mi
010 (j+Mi

001 (z+Mi
110 (hj+Mi

011 (jz+Mi
101 (zh)c i

1, (10)

by neglecting (h,j,zc
1(tn, h, j, z) in the C1 Hermite interpolation function. In Equation (10)

Mi
000=H0(h, hi)H0(j, ji)H0(z, zi), Mi

100=H1(h, hi)H0(j, ji)H0(z, zi),

Mi
010=H0(h, hi)H1(j, ji)H0(z, zi), Mi

001=H0(h, hi)H0(j, ji)H1(z, zi),

Mi
110=H1(h, hi)H1(j, ji)H0(z, zi), Mi

011=H0(h, hi)H1(j, ji)H1(z, zi),

Mi
101=H1(h, hi)H0(j, ji)H1(z, zi), (11)

Figure 1. Schematic representation of the second-order-accurate Strang’s operator splitting algorithm.
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Figure 2. Trajectories of fluid particles in examples 1 and 2.

where

H0(h, hi)= −
1
4

(h+hi)2(h+2hi), H1(h, hi)= +
1
4

(h+hi)2(h−hi). (12)

The expressions for H0(j, ji), H1(j, ji) and H0(z, zi), H1(z, zi) are obtained by replacing h

with j and z, respectively.
Equation (10) indicates that c1(tn+ l, h, j, z) is a function of c1(tn, h, j, z), ch

1(tn, h, j, z),
cj

1(tn, h, j, z), cz
1(tn, h, j, z), ch,j

1 (tn, h, j, z), cj,z
1 (tn, h, j, z) and cz,h

1 (tn, h, j, z). This information
is obtained by solving following first-order

Dcx
1

Dt
= −ux ·9c1,

Dcy
1

Dt
= −uy ·9c1,

Dcz
1

Dt
= −uz ·9c1, (13)

and second-order

Dcxy
1

Dt
= −ux ·9cy

1−uy ·9cx
1 −uxy ·9c1,

Dcyz
1

Dt
= −uy ·9cz

1−uz ·9cy
1−uyz ·9c1,

Dczx
1

Dt
= −uz ·9cx

1 −ux ·9cz
1−uzx ·9c1, (14)
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concentration gradient equations in global co-ordinates. In the above equations, cx
1 =

(t, x)=(xc1(t, x), and cy
1(t, x), cz

1(t, x), cxy
1 (t, x), cyz

1 (t, x), czx
1 (t, x), ux, uy, uz, uxy, uyz, and uzx

are similarly defined. Equations (13) and (14) are obtained by differentiating Equation (7)
with respect to spatial variables. The right-hand-sides of the above equations are known
from previously solved equations, and they are solved along the characteristic defined by
Equation (8). To transform concentration gradients in Equations (14) from local co-ordi-
nates to global co-ordinates and vice-versa, it is necessary to solve equations for
cxx

1 (t, x), cyy
1 (t, x) and czz

1 (t, x). One of the reasons for neglecting ch,j,z
1 (tn, h, j, z) in Equation

(10) is that the corresponding transformations need 26 additional third-order concentration
derivatives.

2.2. Diffusion step of computation

The well-behaved diffusion Equation (5) is discretized in space by a Galerkin finite element
method using linear basis function. The resulting semi-discretized system of equations is
approximated in time by the Crank–Nicolson finite difference method. The details of the
solution procedure can be found in Lapidus and Pinder [19]. To proceed with the computa-
tions, it is necessary to determine diffusion of cx

2(t, x), cy
2(t, x), cz

2(t, x), cxy
2 (t, x), cyz

2 (t, x), and
czx

2 (t, x) corresponding to Equations (13) and (14) in the advection step. In the present study,
the following first-order concentration gradient equations are solved

(tcx
2 =L2cx

2 +L2,xc2, (tcy
2=L2cy

2+L2,yc2, (tcz
2=L2cz

2+L2,zc2, (15)

where L2,x=9 · ((D/(x ·9) and L2,y, L2,z are similarly defined. These equations are obtained
by differentiating Equation (5) with respect to x, y and z respectively. The second term on
the right-hand-sides of these equations are known functions of concentration. Therefore, the
finite element procedure for diffusion equation, with minor changes, is used for solving
Equations (15).

Once c2(tn+ l, x), cx
2(tn+1, x), cy

2(tn+1, x) and cz
2(tn+1, x) are known, the second-order con-

centration gradients cxy
2 (tn+1, x), cyz

2 (tn+1, x) and czx
2 (tn+1, x) are determined from the follow-

ing truncated form of the Hermite interpolation function (10)

c2(tn+1, h, j, z)= %
8

i=1

(Mi
000+Mi

100 (h+Mi
010 (j+Mi

001 (z)c i
2, (16)

where Mi
000, Mi

100, Mi
010 and Mi

001 are defined by Equation (11). The concentration and
concentration gradients on the right-hand-side are at time level tn+ l, and they are known from
the solutions of previous equations.

Application of the finite element method to the three-dimensional diffusion equation results
in a large system of sparse simultaneous equations in each time step, requiring significant
computer time in solving the diffusion equation. Each of the concentration gradient equations
(15) contributes equally in increasing the computational time. A direct application of the Holly
and Preissmann [4] method to the three-dimensional advection–diffusion equation, similar to
that presented by Ding and Liu [7], Glass and Rodi [8], Holly and Usseglio-Polatera [9] and
Yang et al. [10] for two-dimensional problems, would involve solving equations governing
diffusion of cxy

2 (tn+1, x), cyz
2 (tn+1, x) and czx

2 (tn+1, x). The proposed method of evaluating
these terms results in a saving of :40% of computational time in the diffusion step of
computation.
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The motivation for introducing numerical approximations in the diffusion step, rather than
in the advection step like Rasch and Williamson [15], is that computations are less sensitive to
numerical errors [11,20] in the diffusion step of computations. The solution of the diffusion
equation does not have a directional bias. Therefore, numerical schemes for differentiation are
not expected to be problem dependent as found by Rasch and Williamson [15]. It should be
noted that because hexahedral elements are being used, it is not possible to determine all
concentration derivatives by numerical differentiations of c2(tn+ l, x), and completely eliminate
the need to solve Equation (15). Numerical differentiations using trilinear interpolation
functions result in cxx

2 =cyy
2 =czz

2 =0, while cxy
2 , cyz

2 and czx
2 are independent of (x, y), (y, z)

and (z, x) respectively.

3. ACCURACY OF THE ALGORITHM

Errors in the operator splitting algorithm result from splitting the governing differential
equation and solving the split equations by numerical procedures. These errors are known
[11,18] as the splitting error and the truncation error respectively. The results of error analysis
in Khan [20] for the three-dimensional advection–diffusion equation are briefly discussed in
this section. The analysis is not repeated because it is similar to that presented in Khan and
Liu [11], except that equations for the three-dimensional case are algebraically more complex.
The previously reported operator splitting algorithms for one-dimensional [4–6] and two-di-
mensional [7–10] advection–diffusion equations are based on first-order-accurate splitting, i.e.
solving split Equations (4) and (5) in a computational cycle. However, by solving the split
equations in the sequence indicated by Equations (4)–(6), the splitting error is reduced by an
order of magnitude in time. Similar analyses can be found in Demkowicz et al. [3], LeVeque
and Oliger [18] and Khan and Liu [11,21].

Figure 3. Comparison of numerical and analytical solutions for example 1. (—) is the analytical solution, (�) is the
numerical solution.
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Once the governing equation has been split as indicated by Equations (4)–(6), it is sufficient
to solve the split equations by at least second-order-accurate numerical schemes to maintain
second-order-accuracy of the composite algorithm [1,2,11,18]. The numerical procedure for
solving the split advection equation is third-order-accurate in space [20] (see Khan and Liu [11]
for similar analysis for the one-dimensional case). For constant velocity, no time discretization
error is introduced in solving the advection equation [11,20]. The Crank–Nicolson finite
element method for the diffusion equation is second-order-accurate in time and space [19,20].
As a result, the composite algorithm presented in this paper is second-order-accurate in time
and space

For a given accuracy of the algorithm, the magnitude of error for the advection dominated
problem is determined by numerical dispersion and dissipation associated with the numerical
procedure for advection equation. Analysis of numerical dispersion and dissipation for the
three-dimensional advection equation [20], similar to that for the one-dimensional advection
equation [4,5,8,11], indicates that for a damping error of less than 0.0001 per time step, it is
necessary to use a spatial resolution of about 20 elements per wave length. The corresponding
resolution required for one-dimensional problems is approximately ten elements. The increased
resolution necessary for three-dimensional problems is the result of higher dimensionality of
the problem, and cross-wind numerical dispersion and dissipation.

4. SIMULATION CHARACTERISTICS

The operator splitting algorithm described in this paper has been tested for a large number of
two- and three-dimensional transport problems in Khan [20]. In this section, four three-dimen-
sional examples, mostly adopted from Park and Liggett [22], are presented. The velocity
distribution in these examples can be expressed as [22]

u(x)=Vx+uo, (17)

where

uo= (uo, 6o, wo)T (18)

is a constant vector representing uniform flow, and

V=Ã
Æ

È

0
v21

0

v12

0
v32

0
v23

0
Ã
Ç

É
(19)

is a constant shear matrix. The components of shear rate of deformation due to the velocity
field are

ox= (wy+6z)/2, oy= (uz+wx)/2, oz= (6x+uy)/2. (20)

By appropriately selecting v12, v21, v23 and v32, Equation (17) can be used to represent the
velocity field with zero and non-zero shear strains. An analytical solution of the advection–dif-
fusion equation (1) for the velocity field (17) can be found in Park and Liggett [22].

The initial condition for problems considered in this section can be expressed as

c(0, x, y, z)=exp
�

−
(x−xo)2

2so
2 −

(y−yo)2

2so
2 −

(z−zo)2

2so
2

�
, (21)
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Figure 4. Comparison of numerical and analytical solution for example 2. (—) is the analytical solution, (�) is the
numerical solution.

where so is the initial standard deviation of the hump, and (xo, yo, zo) is the position of the
centroid at t=0. A value of so=2.5h, where h is element size, is used so that numerical
dispersion and dissipation are negligible. For the selected value of so, c(0, x) falls from 1.0 to
0.001 over nine elements and the Gaussian hump can be considered to be distributed over
approximately 18 elements in each direction.

The examples presented in this section share a common computational domain, xi�
[−220, 220], i=1, 2 and 3, discretized by 44×44×44 cubic elements each of size 103. The
size of domain has been selected so that the Gaussian hump (21) can undergo considerable
rotation and translation without being significantly affected by boundary conditions, i.e.
c(t, xo)=c1(t, xo)=c2(t, xo)=0 for xo�G, where G is boundary of the domain. It is necessary
to set the concentration to zero on the boundary and using large domains to compare
numerical solutions with analytical solutions derived for infinite domain.

4.1. Ad6ection problems

4.1.1. Example l. The Gaussian hump (21) is placed in the domain with xo= (xo, yo, zo)=
(−100, 0, −100), and the velocity distribution is given by Equation (17) for

−v12=v21=
3

2r0

, v23=v32=0, (uo, 6o, wo)= (0, 0, 0.2170), (22)

where ro=220. As a result, the initial condition undergoes solid body rotation in the x–y
plane and a linear translation in the z-direction. A time step k=15.3589 is used so that the
Gaussian hump undergoes a complete rotation in 60 time steps. The trajectory of xo during the
computations is shown in Figure 2(a). As ox=oy=oz=0, the initial condition should remain
unchanged in shape over the simulation period. Figure 3 compares numerical and analytical
solutions. The maximum Courant number, nmax is 3.2745 in the computations. The computed
peak concentration is 0.9850, while the maximum negative concentration is −0.0001. There-
fore, the error in the computed peak concentration is only 1.50%.
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4.1.2. Example 2. The second example represents a simple change in the velocity field used
in the previous example. However, this modification makes the problem considerably more
difficult. The new velocity field is given by Equation (17) with

−v12=v21=v32=
3

2ro

, v23=0, uo=0. (23)

The Gaussian hump is placed at (xo, yo, zo)= (−100, 0, 0). The trajectory of xo is shown in
Figure 2(b). For a time step k=15.3589, the maximum Courant number nmax=3.9903.

In this example, ox=3/4ro and oy=oz=0. Therefore, the initial condition undergoes rotation
and translation as well as deformation. The velocity distribution is such that deformation in

Figure 5. Three-dimensional and contour plots of concentration for advection example 2.
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Figure 6. Comparison of numerical and analytical solution for example 3. (—) is the analytical solution, (�) is the
numerical solution.

the region x50 is balanced by deformation in the region x]0. Consequently, at the end of
a complete rotation, the Gaussian hump should return to its initial shape. Figure 4 compares
the computed profile after 60 time steps with its initial shape. The corresponding three-dimen-
sional and contour plots of the hump in the z=0 plane are shown in Figure 5. These figures
indicate that the computation has maintained the initial profile quite well. Error in the
computed peak concentration is 2.40%.

4.2. Ad6ection dominated problems

4.2.1. Example 3. The first advection dominated transport problem considers example 1 with
diffusion coefficients Dxx=Dyy=Dzz=0.06. For the computational parameters defined in
example l, the Peclet number m varies from 0 to 250 in the computational domain. Along the
trajectory of x0, m:175. Figure 6 compares analytical and numerical solutions. Error in the
computed peak concentration is only 1.13%. Compared with example l, the smaller error is
mainly due to the increasing size of the hump and smaller spatial concentration gradient as
computations advance in time.

4.2.2. Example 4. This example considers a two-dimensional flow field with a stagnation
point. However, the physical problem is three-dimensional because of the initial condition and
non-zero diffusion in all the co-ordinate directions. The flow field is specified by

v12=v21=r, v23=v32=g, uo=ra(2, −2, 0)T, (24)

where r=0.0006, g=10−20 and a=110. A non-zero g is necessary to allow for the analytical
solution presented by Park and Liggett [22]. The value of a has been selected to have a
stagnation point at (220, −220) in the x–y plane. Figure 7 shows the velocity distribution in
the x–y plane.

In this example, ray method described by Park and Liggett [22] is used to obtain an
appropriate initial condition by advecting and diffusing a point source until the cloud has
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spread sufficiently. The centroid of the resulting hump is located at (−100, 100, 0) in the
computational domain. The concentration distribution is normalized by the maximum analyt-
ical concentration. For Dxx=Dyy=Dzz=0.06, m along the trajectory of peak concentration,
the line joining (−220, 220) and (220, −220) in Figure 7, varies from 62.25 to 0. The initial
condition is then advected and diffused by the numerical model from (−100, 100, 0) to
(0, 0, 0) in 30 time steps. For the velocity distribution given by Equation (24), the correspond-
ing time step k comes to 18.3590. The computation is stopped at 30 time steps because further
advection of the hump is very slow as velocity approaches zero. Figure 8 shows the
concentration distribution at the end of computation. Figure 9 compares results with the
analytical solution along the line joining (−220, 200) and (220, −220) and normal passing
through centroid of the hump as indicated in Figure 8. The peak value of concentration from
the analytical solution is 0.8151, while the numerical solution gives 0.8429. Therefore, the
numerical model overshoots the analytical solution by 3.40%. A similar situation has also been
reported by Park and Liggett [22].

Figure 7. Velocity distribution in the x–y plane in example 4.
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Figure 8. Spatial concentration distribution in example 4.

4.3. Accuracy of solution

The computational resources required for verifying accuracy of solution using three-dimen-
sional problems, in general, exceed the computational capabilities which are currently avail-
able. Therefore, three two-dimensional problems (a) solid body rotation of Gaussian hump, (b)
diffusion of the hump and (c) solid body rotation and diffusion of the hump are used to verify
accuracy of the operator splitting algorithm. The computations are performed with (k, h),
(k/2, h/2) and (k/4, h/4), where k=18.3589, h=10 and so=20, and simulation period
T=917.943. Errors in computed peak concentration o are plotted in Figure 10 as a function
of (k, h). The best fit lines and their slopes, indicating accuracy of solution, are also shown in
the figure. Slopes of lines corresponding to the method of characteristics for the advection
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equation, the finite element method for the diffusion equation and the splitting algorithm for
the advection–diffusion equation are 3.12, 1.97 and 2.15 respectively. These results are
consistent with the theoretical analysis of accuracies of the operator splitting algorithm and the
numerical procedures for solving the split equations.

The numerical examples presented in this paper have been designed such that numerical
damping is B0.0001 per time step. In examples 1 and 2, representing pure advection problems,
the expected peak concentration after 60 time steps is 0.999960=0.9940. The computed peak
concentrations are within 2.0% of the predicted value. The discrepancy between predicted and
computed result is mainly due to non-uniform velocity distribution. If spatial resolution of a
problem does not meet the criteria of negligible numerical damping, then magnitude of errors
in the computations will be high. For example, if so=1.5h is used in example 1 or 2, then the
initial condition will be distributed over approximately 14 elements in each direction. The
corresponding numerical damping is 0.00485 per time step. In 60 time steps the peak
concentration will be damped to 0.995260=0.7470, resulting in an error of about 25%.

5. SUMMARY AND CONCLUSIONS

An operator splitting algorithm for the three-dimensional advection–diffusion equation has
been presented in this paper. The algorithm is a second-order-accurate adaptation of the Holly
and Preissmann method, employing Strang type splitting. A backward method of characteris-
tics combined with a C0 continuous Hermite interpolation function is used to solve the
advection equation. Following Holly and Preissmann, the equations for spatial concentration
gradients in the Hermite interpolation function are solved in the advection step. For three-di-
mensional problems, solving the diffusion equation using the conventional finite element
method results in a large system of simultaneous equations, requiring high computational time.
To reduce the computational time and to make the composite algorithm efficient, diffusion

Figure 9. Comparison of numerical and analytical solution for example 4 along x� and y� as shown in Figure 8. (—)
is the analytical solution, (�) is the numerical solution.
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Figure 10. Accuracy of numerical procedures: (�) is the backward method of characteristics for advection equation,
(�) is the finite element method for diffusion equation, and (!) is the composite algorithm for the advection–diffu-

sion equation.

equations for concentration and first-order concentration gradients are solved. The second-
order concentration derivatives are obtained by numerical differentiation. As the diffusion step
of computation is less sensitive to numerical errors, the proposed method is preferable to
Rasch and Williamson [15]. Compared with Komatsu et al. [13,14], the present method retains
the desirable features of the Holly and Preissmann scheme in developing an efficient operator
splitting algorithm for the multidimensional advection–diffusion equation. The numerical
examples, involving pure advection and advection dominated transport problems, indicate the
good simulation characteristics of the algorithm for three-dimensional problems. The second-
order-accuracy of the composite algorithm has been verified by numerical experiments.
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